Proteolysis and Aging. Why I Take Serrapeptase and Lumbrokinase(Sometimes)

What is the relationship between proteolysis and aging?

Note: The use of these enzymes should likely be for a limited time span only. I will use them for a two-week period once every few months to clean out the aging cobwebs…8). The reason why is explained in the last paragraph.

Proteolysis refers to the breakdown of proteins into their constituent amino acids or smaller peptides, typically by enzymatic action. In the context of aging, proteolysis is an essential part of cellular maintenance and repair mechanisms, which are critical for health and longevity. Here are some potential benefits of proteolysis on aging:

1. Clearance of damaged proteins: Over time, proteins can become damaged due to various factors like oxidative stress, exposure to harmful substances, etc. Damaged proteins can become dysfunctional and may contribute to age-related diseases. Proteolysis helps in clearing these damaged proteins, maintaining the health of cells and tissues.

2. Autophagy and longevity: Proteolysis is a key part of autophagy, a cellular process of self-digestion where damaged organelles, misfolded or aggregated proteins are degraded and recycled. Dysfunctional autophagy has been linked with aging and age-related diseases. Enhancing autophagy through proteolysis might promote longevity and slow down the aging process.

3. Regulation of protein homeostasis (proteostasis): Aging is associated with a decline in proteostasis, the balance of protein synthesis, folding, and degradation. Proteolysis is a major factor in maintaining proteostasis, which is crucial for cellular function and health.

4. Activation of beneficial pathways: Certain proteins, when broken down through proteolysis, can activate pathways that are beneficial for health and longevity. For example, proteolysis of certain proteins can activate mTOR (mechanistic target of rapamycin), a key regulator of aging.

5. Immune system function: Proteolysis can support immune system function, which often declines with age. The process helps present antigens to immune cells, aiding in the recognition and clearance of pathogens and potentially cancerous cells.

6. Cell signaling: Proteolysis also plays a role in various cell signaling pathways, many of which can impact aging. For example, Notch signaling, which is regulated in part by proteolysis, is involved in cell differentiation and tissue homeostasis.

While proteolysis appears to have beneficial effects on aging, it’s also important to note that uncontrolled proteolysis can lead to muscle wasting and other detrimental effects. Balance is key, and maintaining optimal levels of proteolysis is important for health and longevity. Further research is needed to better understand how to regulate proteolysis for anti-aging benefits.

-Michael J. Loomis & ChatGPT

All Carbs Are Created Equal. Not All Carbs Remain The Same

Plant-based/whole foods(grains, fruit, vegetables, and beans) have fiber in them, which slows the rate of glucose entering your bloodstream. Fiber also promotes a sense of fullness and is good for your digestive system. Animal-based foods and processed/refined carbohydrates contain no fiber. This causes your glucose levels to spike, and then shortly after, your blood sugar crashes. This ultimately makes you feel hungrier sooner, even if you recently consumed an abundance of these calories.

Carbohydrates, or carbs for short, can be divided into two groups: “simple” and “complex” or “whole” and “refined.” Whole carbs are in foods that are not highly processed and contain natural fiber, while refined carbs have been processed more and have had their natural fiber removed or altered.

Although bread, rice, pasta, and cereal are all carbs, they are not all the same when it comes to nutrition. Processed carbs like white bread, white rice, cookies, and soft drinks are often consumed in large amounts in the United States. However, these foods have been blamed for causing health problems such as obesity, heart disease, and type II diabetes.

Eating too many simple sugars and refined flour products can lead to these health problems. It’s important to be aware of the differences between whole and refined carbs and to choose whole carbs whenever possible to maintain good health.

Carbohydrates are not the problem. Too much glucose is. This is why we monitor glucose rather than carbohydrates.

Does the human body need carbohydrates to survive? No, however, it’s important to note that the conversion of proteins into glucose is not the body’s preferred method of producing energy. Carbohydrates are the body’s preferred source of energy, and when there is an adequate supply of carbohydrates in the diet, the body does not need to use proteins for energy.

Yes, proteins can be converted into glucose through a process called gluconeogenesis, but this process only occurs in the liver and only when the body needs glucose for energy. Gluconeogenesis is an extremely costly and complex process that involves breaking down amino acids from proteins and converting them into glucose molecules that can be used by the body for energy.

The primary use of proteins is and should remain for the building and repairing of tissues, making hormones and enzymes, and maintaining a healthy immune system.

Our body can do amazing things in sub-optimal conditions, like turning proteins into glucose. But why waste the energy and effort when we could simply give our body carbohydrates, its preferred form of glucose?